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Exemple de visualisation de l’état de contrainte

Visualisation des contraintes internes par 
des sources de lumière polarisée

Interférence de Moiré d’une plaque 
sous contrainte

Critère de concentration de contrainte 
obtenu par simulation numérique
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Les contraintes autour d’un point M0 d’un milieu continu sont, par définition, les
forces spécifiques agissant sur les éléments de surface passant par ce point

Soit ∆Fn un élément de surface passant par M0, de vecteur normal unitaire n, sur
lequel agit une force élémentaire ∆P.

La contrainte pn sur cet élément de surface, repéré par le vecteur n, a donc pour
valeur

• 𝐩𝐩𝑛𝑛 = lim
∆𝐹𝐹𝑛𝑛→0

∆𝐏𝐏
∆𝐹𝐹𝑛𝑛

= 𝑑𝑑𝐏𝐏
𝑑𝑑𝐹𝐹𝑛𝑛

Analyse de l’état de contrainte

La contrainte normale sur l’élément de
surface ∆Fn est la projection σn de la
contrainte pn sur la normale n, tandis que
la contrainte tangentielle sur cet élément
est la composante τn de pn dans le plan
de ∆Fn



Chapitre 13 : États de contrainte et déformationΓ𝜎𝜎 =
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑧𝑧𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦 𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧 𝜏𝜏𝑦𝑦𝑦𝑦 𝜎𝜎𝑧𝑧

5

Théorème de Cauchy : La projection d’une contrainte pn, relative à une face de
normale n, sur la normale n’ d’une autre face passant par le même point M0 d’un
milieu continu est égale à la projection de la contrainte p’n, relative à la face de
normale n’, sur la normale n

• p𝑛𝑛 � 𝐧𝐧′ = p′𝑛𝑛 � 𝐧𝐧

Analyse de l’état de contrainte
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Matrice de contrainte

Par le point M0, faisons passer trois axes perpendiculaires M0x, M0y et M0z, de vec-
teurs unitaires respectifs i, j et k. Sur les trois éléments de surface ∆Fx, ∆Fy et ∆Fz,
perpendiculaires aux axes, agissent respectivement les contraintes px, py et pz. Ces
éléments de surface passent par le point M0, mais ils sont représentés séparément
sur la figure pour plus de clarté

px =(σx, τxy, τxz).

py = (τyx, σy, τyz) 

pz = (τzx, τzy, σz)
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Matrice de contrainte

La contrainte px a pour composantes (σx, τxy, τxz). De même, les composantes de py
et pz sont respectivement (τyx, σy, τyz) et (τzx, τzy, σz). Il est évident qu’en raison du
théorème de Cauchy, ces neuf composantes ne peuvent pas être toutes indépen-
dantes

• p𝑦𝑦 � 𝐢𝐢 = p𝑥𝑥 � 𝐣𝐣

• p𝑧𝑧 � 𝐣𝐣 = p𝑦𝑦 � 𝐤𝐤

• p𝑥𝑥 � 𝐤𝐤 = p𝑧𝑧 � 𝐢𝐢

Sous forme matriciel

• p𝑛𝑛 = 𝚪𝚪𝜎𝜎 � 𝐧𝐧

τxy = τyx

τzy = τyz

τxz = τzx
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Matrice de contrainte

La grandeur Γσ est appelée matrice du tenseur des contraintes ou plus simplement
matrice des contrainte

• 𝚪𝚪𝜎𝜎 =
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑥𝑥 𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦 𝜏𝜏𝑦𝑦𝑦𝑦
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Notons que la matrice Γσ est symétrique en vertu du théorème de Cauchy. Or, il est
toujours possible de transformer une matrice symétrique en matrice diagonale par
rotation appropriée des axes. La matrice Γσ peut donc être diagonalisée sous la
forme

• 𝚪𝚪′𝜎𝜎 =
𝜎𝜎1 0 0
0 𝜎𝜎2 0
0 0 𝜎𝜎3
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Les contraintes principales σ1, σ2 et σ3 sont portées par les axes principaux et sont
normales aux faces principales conformément à l’algèbre linéaire, elles
correspondent aux valeurs propres de la matrice des contraintes et sont donc des
extrema des contraintes normales σx, σy et σz. Relevons enfin que les contraintes
tangentielles sont nulles sur les faces principales, comme le montre la matrice Γ’σ

Matrice de contrainte
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Considérons maintenant un élément infinitésimal hexaédrique droit de volume
dV = dxdydz dont l’état de contrainte n’est plus considéré comme homogène, centré
au point M0(x,y,z) et dont les faces sont orientées selon les axes x, y et z et soumis à
des forces volumiques d’amplitudes fx, fy, et fz.

Le champs de contrainte est alors non-uniforme

Équation d’équilibre
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Équation d’équilibre

Si les contraintes sont des fonctions continûment différentiables des variables x, y et
z , cet accroissement peut-être déterminé à partir d’un développement de Taylor
limité au premier ordre

• 𝜎𝜎𝑥𝑥 𝑥𝑥 + 𝑑𝑑𝑑𝑑,𝑦𝑦, 𝑧𝑧 = 𝜎𝜎𝑥𝑥 𝑥𝑥,𝑦𝑦, 𝑧𝑧 + 𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑑𝑑𝑑𝑑

• 𝜏𝜏𝑥𝑥𝑦𝑦 𝑥𝑥 + 𝑑𝑑𝑑𝑑,𝑦𝑦, 𝑧𝑧 = 𝜏𝜏𝑥𝑥𝑥𝑥 𝑥𝑥,𝑦𝑦, 𝑧𝑧 + 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑑𝑑𝑑𝑑

• 𝜏𝜏𝑥𝑥𝑥𝑥 𝑥𝑥 + 𝑑𝑑𝑑𝑑, 𝑦𝑦, 𝑧𝑧 = 𝜏𝜏𝑥𝑥𝑥𝑥 𝑥𝑥,𝑦𝑦, 𝑧𝑧 + 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑑𝑑𝑑𝑑

On peut écrire les conditions d’équilibre des forces appliquées sur le parallélépipède
infinitésimal dV. La somme des six composantes issues des forces surfaciques
dérivées des contraintes et de la composante découlant de la charge volumique
correspondante doit s’annuler. Selon M0x par exemple :

• 𝜎𝜎𝑥𝑥 + 𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 − 𝜎𝜎𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜏𝜏𝑦𝑦𝑦𝑦 + 𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑 − 𝜏𝜏𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜏𝜏𝑧𝑧𝑧𝑧 + 𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕𝑧𝑧

𝑑𝑑𝑧𝑧 𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦 − 𝜏𝜏𝑧𝑧𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦 + 𝑓𝑓𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 = 0
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Equation d’équilibre

En divisant par le volume infinitésimal dxdydz et en procédant de manière identique
selon M0y et M0z on aboutit finalement aux trois relations générales qui constituent
les équations d’équilibre.

• 𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜏𝜏𝑧𝑧𝑥𝑥
𝜕𝜕𝑧𝑧

+ 𝑓𝑓𝑥𝑥 = 0

•
𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜎𝜎𝑦𝑦
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑦𝑦 = 0

• 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜎𝜎𝑧𝑧
𝜕𝜕𝑧𝑧

+ 𝑓𝑓𝑧𝑧 = 0
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Matrices des déformations

Soit un point P(x,y,z) d’un corps B occupant un volume dans l’espace. Lorsqu’il est
déformé, le corps occupe une nouvelle configuration B’ appelée configuration
déformée.

• 𝑥𝑥′ = 𝑥𝑥 + 𝑢𝑢 𝑥𝑥, 𝑦𝑦, 𝑧𝑧

• 𝑦𝑦′ = 𝑦𝑦 + 𝑣𝑣 𝑥𝑥,𝑦𝑦, 𝑧𝑧

• 𝑧𝑧′ = 𝑧𝑧 + 𝑤𝑤 𝑥𝑥,𝑦𝑦, 𝑧𝑧

z
x

y

B

B’
P

P’

ds
Q’

ds Q

u, v, w sont les composantes du 
vecteur de déplacement 𝑃𝑃𝑃𝑃𝑃
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Soit Q(x+dx , y+dy , z+dz) un point infiniment proche de P. Après déformation Q
devient Q’

• 𝑥𝑥′ + 𝑑𝑑𝑥𝑥′ = 𝑥𝑥 + 𝑑𝑑𝑑𝑑 + 𝑢𝑢 + 𝑑𝑑𝑢𝑢

• 𝑦𝑦′ + 𝑑𝑑𝑦𝑦′ = 𝑦𝑦 + 𝑑𝑑𝑑𝑑 + 𝑣𝑣 + 𝑑𝑑𝑑𝑑

• 𝑧𝑧′ + 𝑑𝑑𝑧𝑧′ = 𝑧𝑧 + 𝑑𝑑𝑑𝑑 + 𝑤𝑤 + 𝑑𝑑𝑑𝑑

Le déplacement du point Q peut être exprimé par un développement de Taylor dans
le voisinage de P’

• 𝑢𝑢 + 𝑑𝑑𝑑𝑑 = 𝑢𝑢 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦
𝑑𝑑𝑦𝑦 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧
𝑑𝑑𝑧𝑧

• 𝑣𝑣 + 𝑑𝑑𝑑𝑑 = 𝑣𝑣 + 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑

• 𝑤𝑤 + 𝑑𝑑𝑑𝑑 = 𝑤𝑤 + 𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
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En substituant ces équations dans les relations qui expriment les coordonnée du
point Q’ et dans P’ (on ne présente que la solution de la première équation)

• 𝑑𝑑𝑥𝑥′ = 1 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
𝑑𝑑𝑦𝑦 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧
𝑑𝑑𝑧𝑧

Ces équations étant linéaires en dx, dy et dz, elles peuvent être considérées comme
représentant la transformation linéaire de 𝑃𝑃𝑄𝑄 en 𝑃𝑃′𝑄𝑄′. L’incrément de déplacement
vaut alors

• 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑥𝑥′ − 𝑑𝑑𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑

La longueur au carré de ces éléments peut alors exprimée par
• 𝑑𝑑𝑆𝑆2 = 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2

• 𝑑𝑑𝑠𝑠2 = 𝑑𝑑𝑥𝑥′2 + 𝑑𝑑𝑦𝑦′2 + 𝑑𝑑𝑧𝑧′2

= 𝑑𝑑𝑆𝑆2 + 2𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥2 + 2𝑒𝑒𝑦𝑦𝑑𝑑𝑦𝑦2 + 2𝑒𝑒𝑧𝑧𝑑𝑑𝑧𝑧2 + 4 𝑒𝑒𝑥𝑥𝑦𝑦𝑑𝑑𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑦𝑦𝑦𝑦𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 + 𝑒𝑒𝑧𝑧𝑧𝑧𝑑𝑑𝑧𝑧𝑑𝑑𝑥𝑥
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Ce qui permet de définir les éléments du tenseur de déformation d’Euler-Almansi e

• 𝑒𝑒𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 1

2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

2
+ 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕

2
+ 𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕

2

• 𝑒𝑒𝑥𝑥𝑦𝑦 = 1
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

En se limitant aux petites déformations, les déplacements ont des dérivées petites et
donc les produits peuvent être négligés. De sorte que le tenseur e peut être
approché par le tenseur de déformation infinitésimal ε

• 𝑒𝑒𝑥𝑥 ≅ 𝜀𝜀𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

• 𝑒𝑒𝑥𝑥𝑦𝑦 ≅ 𝜀𝜀𝑥𝑥𝑦𝑦 = 1
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

La longueur d’un élément infinitésimal est alors donnée par

• 𝑑𝑑𝑠𝑠2 = 𝑑𝑑𝑆𝑆2 + 2𝜀𝜀𝑥𝑥𝑑𝑑𝑥𝑥2 + 2𝜀𝜀𝑦𝑦𝑑𝑑𝑦𝑦22𝜀𝜀𝑧𝑧𝑑𝑑𝑧𝑧2 + 4 𝜀𝜀𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑦𝑦𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑧𝑧𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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En plus des déformations ε définies, l’éléments dS subit une rotation qui peut être
exprimée par le vecteur ω

• 𝜔𝜔𝑦𝑦𝑦𝑦 = 1
2

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
− 𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜔𝜔𝑥𝑥𝑥𝑥 = 1

2
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧
− 𝜕𝜕𝑤𝑤

𝜕𝜕𝑥𝑥
𝜔𝜔𝑧𝑧𝑧𝑧 = 1

2
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦
− 𝜕𝜕𝑣𝑣

𝜕𝜕𝑧𝑧

Ce qui permet d’explicité les coordonnées du point P’ et du vecteur déplacement de
𝑃𝑃𝑃𝑃′ (seul les premiers termes sont explicités ici)

• 𝑑𝑑𝑥𝑥′ = 1 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = 1 + 𝜀𝜀𝑥𝑥 𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑥𝑥𝑦𝑦 − 𝜔𝜔𝑦𝑦𝑦𝑦 𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑥𝑥𝑧𝑧 − 𝜔𝜔𝑧𝑧𝑧𝑧 𝑑𝑑𝑑𝑑

• 𝑑𝑑𝑑𝑑 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = 𝜀𝜀𝑥𝑥𝑑𝑑𝑥𝑥 + 𝜀𝜀𝑥𝑥𝑥𝑥 − 𝜔𝜔𝑦𝑦𝑦𝑦 𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑥𝑥𝑥𝑥 − 𝜔𝜔𝑧𝑧𝑧𝑧 𝑑𝑑𝑑𝑑
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Ce qui permet d’écrire la relation matriciel

•
𝑑𝑑𝑑𝑑
𝑑𝑑𝑣𝑣
𝑑𝑑𝑤𝑤

=
𝜀𝜀𝑥𝑥 𝜀𝜀𝑥𝑥𝑦𝑦 𝜀𝜀𝑥𝑥𝑧𝑧
𝜀𝜀𝑦𝑦𝑦𝑦 𝜀𝜀𝑦𝑦 𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝑧𝑧𝑧𝑧 𝜀𝜀𝑧𝑧𝑧𝑧 𝜀𝜀𝑧𝑧

𝑑𝑑𝑥𝑥
𝑑𝑑𝑦𝑦
𝑑𝑑𝑧𝑧

+
0 −𝜔𝜔𝑥𝑥𝑦𝑦 𝜔𝜔𝑥𝑥𝑧𝑧
𝜔𝜔𝑦𝑦𝑦𝑦 0 −𝜔𝜔𝑧𝑧𝑧𝑧
−𝜔𝜔𝑥𝑥𝑥𝑥 𝜔𝜔𝑧𝑧𝑧𝑧 0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝚪𝚪𝜺𝜺
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ Ω
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

On a ainsi défini la matrice de déformations 𝚪𝚪𝜺𝜺 (déformation infinitésimales au point P)
et la matrice de rotations Ω (rotations infinitésimales d’un segment PQ)



Dr. Alain Prenleloup
SGM BA3 2024-2025
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La théorie de l’élasticité est applicable dans un grand nombre de cas pratique, les
déformations étant généralement suffisamment petites pour que le recours à la loi de
Hooke soit justifié (en particulier pour les métaux et les céramiques).

Il faut aussi relever que la théorie de l’élasticité jette les fondements de la mécanique
des solides et est à la base de l’élasticité non-linéaire , de la viscoélasticité et de
l’élastoplacticité.

On se contentera ici de décrire les équations de base pour un matériau isotrope

Introduction aux éléments d’élasticité linéaire
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La théorie de l’élastostatique pour un matériau isotrope, homogène et linéaire,
soumis à des forces volumiques ainsi qu’à des déplacement ou des charges
imposés sur sa frontière, se base sur l’utilisation des 15 équations décrites ci-après.

3 équations d’équilibre

• 𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏𝑧𝑧𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑥𝑥 = 0

•
𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜎𝜎𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑦𝑦 = 0

• 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜎𝜎𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑧𝑧 = 0

Equilibre des forces dans les 3 directions (chapitre 1 : équilibre intérieur d’un solide)

• 𝐑𝐑 = ∑𝐏𝐏𝑗𝑗

Equilibre des moments de force à conduit à pouvoir écrire τij = τji

Equation fondamentales de l’élastostatique linéaire

𝜎𝜎𝑧𝑧 +
𝜕𝜕𝜎𝜎𝑧𝑧
𝜕𝜕𝜕𝜕

𝑑𝑑𝑧𝑧

𝜏𝜏𝑧𝑧𝑧𝑧 +
𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑

𝜏𝜏𝑧𝑧𝑧𝑧 +
𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑

fz

fx

fy

𝜏𝜏𝑧𝑧𝑧𝑧

𝜎𝜎𝑦𝑦 +
𝜕𝜕𝜎𝜎𝑦𝑦
𝜕𝜕𝜕𝜕

𝑑𝑑𝑦𝑦

𝜏𝜏𝑦𝑦𝑦𝑦 +
𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦

𝜏𝜏𝑦𝑦𝑦𝑦 +
𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦

𝜎𝜎𝑥𝑥 +
𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

𝑑𝑑𝑥𝑥

𝜏𝜏𝑥𝑥𝑥𝑥 +
𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥

𝜏𝜏𝑥𝑥𝑥𝑥 +
𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥

dx

dz

dy

z

x
y

𝜎𝜎𝑧𝑧 +
𝜕𝜕𝜎𝜎𝑧𝑧
𝜕𝜕𝜕𝜕

𝑑𝑑𝑧𝑧

𝜏𝜏𝑧𝑧𝑧𝑧 +
𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑

𝜏𝜏𝑧𝑧𝑧𝑧 +
𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑

fz

fx

fy

𝜏𝜏𝑧𝑧𝑧𝑧

𝜎𝜎𝑧𝑧

𝜏𝜏𝑥𝑥𝑥𝑥

𝜏𝜏𝑥𝑥𝑥𝑥

𝜎𝜎𝑥𝑥

𝜏𝜏𝑦𝑦𝑦𝑦

𝜏𝜏𝑦𝑦𝑦𝑦

𝜎𝜎𝑦𝑦 𝜎𝜎𝑦𝑦 +
𝜕𝜕𝜎𝜎𝑦𝑦
𝜕𝜕𝜕𝜕

𝑑𝑑𝑦𝑦

𝜏𝜏𝑦𝑦𝑦𝑦 +
𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦

𝜏𝜏𝑦𝑦𝑦𝑦 +
𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝜕𝜕𝑦𝑦

𝑑𝑑𝑦𝑦

𝜎𝜎𝑥𝑥 +
𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

𝑑𝑑𝑥𝑥

𝜏𝜏𝑥𝑥𝑥𝑥 +
𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥

𝜏𝜏𝑥𝑥𝑥𝑥 +
𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥

dx

dz

dy



Chapitre 14 : Éléments d’élasticité linéairesΓ𝜎𝜎 =
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑧𝑧𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦 𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧 𝜏𝜏𝑦𝑦𝑦𝑦 𝜎𝜎𝑧𝑧

27

6 équations définissant la relation déformation-déplacement

(3 normales + 3 tangentielles)

• 𝜀𝜀𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜀𝜀𝑦𝑦 = 𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦

𝜀𝜀𝑧𝑧 = 𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧

Déformation relative (chapitre 2 : traction ou compression simple)

• 𝜀𝜀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= ∆
0

= 𝑑𝑑𝑑𝑑+𝑢𝑢 𝑥𝑥+𝑑𝑑𝑑𝑑 −𝑢𝑢(𝑥𝑥) −𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≅ 𝑢𝑢 𝑥𝑥 +𝑢𝑢′ 𝑥𝑥 𝑑𝑑𝑑𝑑−𝑢𝑢 𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑢𝑢′ 𝑥𝑥 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Equation fondamentales de l’élastostatique linéaire

u(x) u(x+dx)

dx+u(x+dx)-u(x)

x+dxx
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6 équations définissant la relation déformation-déplacement

(3 normales + 3 tangentielles)

• 𝛾𝛾𝑥𝑥𝑥𝑥 = 𝛾𝛾𝑦𝑦𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛾𝛾𝑦𝑦𝑦𝑦 = 𝛾𝛾𝑧𝑧𝑧𝑧 = 𝜕𝜕𝑣𝑣
𝜕𝜕𝑧𝑧

+ 𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦

𝛾𝛾𝑧𝑧𝑧𝑧 = 𝛾𝛾𝑥𝑥𝑥𝑥 = 𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

Angle de glissement (chapitre 4 : cisaillement simple)

• 𝛾𝛾 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Equation fondamentales de l’élastostatique linéaire
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6 équations caractérisant la relation contrainte-déformation 3 comp. normales

• 𝜎𝜎𝑥𝑥 = 𝐸𝐸
1+𝜇𝜇 1−2𝜇𝜇

1 − 𝜇𝜇 𝜀𝜀𝑥𝑥 + 𝜇𝜇𝜀𝜀𝑦𝑦 + 𝜇𝜇𝜀𝜀𝑧𝑧

• 𝜎𝜎𝑦𝑦 = 𝐸𝐸
1+𝜇𝜇 1−2𝜇𝜇

𝜇𝜇𝜀𝜀𝑥𝑥 + 1 − 𝜇𝜇 𝜀𝜀𝑦𝑦 + 𝜇𝜇𝜀𝜀𝑧𝑧

• 𝜎𝜎𝑧𝑧 = 𝐸𝐸
1+𝜇𝜇 1−2𝜇𝜇

𝜇𝜇𝜀𝜀𝑥𝑥 + 𝜇𝜇𝜀𝜀𝑦𝑦 + 1 − 𝜇𝜇 𝜀𝜀𝑧𝑧

Ou

• 𝜀𝜀𝑥𝑥 = 1
𝐸𝐸
𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑧𝑧

• 𝜀𝜀𝑦𝑦 = 1
𝐸𝐸
𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑧𝑧

• 𝜀𝜀𝑧𝑧 = 1
𝐸𝐸
𝜎𝜎𝑧𝑧 − 𝜇𝜇𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑥𝑥

Equation fondamentales de l’élastostatique linéaire
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6 équations caractérisant la relation contrainte-déformation 3 comp. normales

• 𝜀𝜀𝑥𝑥 = 1
𝐸𝐸
𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑧𝑧

• 𝜀𝜀𝑦𝑦 = 1
𝐸𝐸
𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑧𝑧

• 𝜀𝜀𝑧𝑧 = 1
𝐸𝐸
𝜎𝜎𝑧𝑧 − 𝜇𝜇𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑥𝑥

Chapitre 3 : Etat de contrainte bidimensionnel

Equation fondamentales de l’élastostatique linéaire

Allongement selon M0x Allongement selon M0y Allongement selon M0z

Effet selon σx 𝜀𝜀𝑥𝑥𝑥𝑥 =
𝜎𝜎𝑥𝑥
𝐸𝐸

𝜀𝜀𝑦𝑦𝑦𝑦 = −𝜇𝜇
𝜎𝜎𝑥𝑥
𝐸𝐸

𝜀𝜀𝑧𝑧𝑧𝑧 = −𝜇𝜇
𝜎𝜎𝑥𝑥
𝐸𝐸

Effet selon σy 𝜀𝜀𝑥𝑥𝑥𝑥 = −𝜇𝜇
𝜎𝜎𝑦𝑦
𝐸𝐸

𝜀𝜀𝑦𝑦𝑦𝑦 =
𝜎𝜎𝑦𝑦
𝐸𝐸

𝜀𝜀𝑧𝑧𝑧𝑧 = −𝜇𝜇
𝜎𝜎𝑦𝑦
𝐸𝐸

Effet selon σy 𝜀𝜀𝑥𝑥𝑥𝑥 = −𝜇𝜇
𝜎𝜎𝑧𝑧
𝐸𝐸

𝜀𝜀𝑦𝑦𝑦𝑦 = −𝜇𝜇
𝜎𝜎𝑧𝑧
𝐸𝐸

𝜀𝜀𝑧𝑧𝑧𝑧 =
𝜎𝜎𝑧𝑧
𝐸𝐸

Somme 𝜀𝜀𝑥𝑥 =
1
𝐸𝐸

𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑧𝑧 𝜀𝜀𝑦𝑦 =
1
𝐸𝐸

𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑧𝑧 𝜀𝜀𝑧𝑧 =
1
𝐸𝐸

𝜎𝜎𝑧𝑧 − 𝜇𝜇𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑦𝑦
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6 équations caractérisant la relation contrainte-déformation 3 comp. tangentielles

• 𝜏𝜏𝑥𝑥𝑦𝑦 = 𝐸𝐸
2 1+𝜇𝜇

𝛾𝛾𝑥𝑥𝑥𝑥 = 𝐺𝐺𝛾𝛾𝑥𝑥𝑥𝑥

• 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝐸𝐸
2 1+𝜇𝜇

𝛾𝛾𝑦𝑦𝑦𝑦 = 𝐺𝐺𝛾𝛾𝑦𝑦𝑦𝑦

• 𝜏𝜏𝑧𝑧𝑧𝑧 = 𝐸𝐸
2 1+𝜇𝜇

𝛾𝛾𝑧𝑧𝑧𝑧 = 𝐺𝐺𝛾𝛾𝑧𝑧𝑧𝑧
Ou

• 𝛾𝛾𝑥𝑥𝑦𝑦 = 2 1+𝜇𝜇
𝐸𝐸

𝜏𝜏𝑥𝑥𝑥𝑥 = 1
𝐺𝐺
𝜏𝜏𝑥𝑥𝑥𝑥

• 𝛾𝛾𝑦𝑦𝑦𝑦 = 2 1+𝜇𝜇
𝐸𝐸

𝜏𝜏𝑦𝑦𝑦𝑦 = 1
𝐺𝐺
𝜏𝜏𝑦𝑦𝑦𝑦

• 𝛾𝛾𝑧𝑧𝑧𝑧 = 2 1+𝜇𝜇
𝐸𝐸

𝜏𝜏𝑧𝑧𝑧𝑧 = 1
𝐺𝐺
𝜏𝜏𝑧𝑧𝑧𝑧

Angle de glissement (chapitre 4, 5 et 6 : cisaillement, torsion, flexion)

• 𝛾𝛾 = 𝜏𝜏
𝐺𝐺

• 𝐺𝐺 = 𝐸𝐸
2 1+𝜇𝜇

Equation fondamentales de l’élastostatique linéaire
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6 équations caractérisant la relation contrainte-déformation

•

𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜎𝜎𝑧𝑧
𝜏𝜏𝑥𝑥𝑦𝑦
𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧

= 𝐸𝐸 1−𝜇𝜇
1+𝜇𝜇 1−2𝜇𝜇

1 − 𝜇𝜇 𝜇𝜇 𝜇𝜇 0 0 0
1 − 𝜇𝜇 𝜇𝜇 0 0 0

1 − 𝜇𝜇 0 0 0
1−2𝜇𝜇
2

0 0

(𝑠𝑠𝑠𝑠𝑠𝑠) 1−2𝜇𝜇
2

0
1−2𝜇𝜇
2

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑧𝑧
𝛾𝛾𝑥𝑥𝑥𝑥
𝛾𝛾𝑦𝑦𝑦𝑦
𝛾𝛾𝑧𝑧𝑧𝑧

•

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑧𝑧
𝛾𝛾𝑥𝑥𝑥𝑥
𝛾𝛾𝑦𝑦𝑦𝑦
𝛾𝛾𝑧𝑧𝑧𝑧

=

1
𝐸𝐸

− 𝜇𝜇
𝐸𝐸

− 𝜇𝜇
𝐸𝐸

0 0 0
1
𝐸𝐸

− 𝜇𝜇
𝐸𝐸

0 0 0
1
𝐸𝐸

0 0 0
1
𝐺𝐺

0 0

(𝑠𝑠𝑠𝑠𝑠𝑠) 1
𝐺𝐺

0
1
𝐺𝐺

𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜎𝜎𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧

Equation fondamentales de l’élastostatique linéair



Chapitre 14 : Éléments d’élasticité linéairesΓ𝜎𝜎 =
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑧𝑧𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦 𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧 𝜏𝜏𝑦𝑦𝑦𝑦 𝜎𝜎𝑧𝑧
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Le système d’équation précité ne peut être résolu que si les conditions aux limites
appropriées sont imposées.

Considérons que le solide, occupant un domaine V, possède une frontière S que l’on
peut diviser en deux parties (S = Su U St ).

La partie Su représentant la partie de surface sur laquelle des composantes de
déplacement u, v et w sont imposées aux valeurs respectives �𝑢𝑢, 𝑣̅𝑣 et �𝑤𝑤

• 𝑢𝑢 = �𝑢𝑢 𝑣𝑣 = 𝑣̅𝑣 𝑤𝑤 = �𝑤𝑤  conditions aux limites naturelles

La partie St représentant la partie de surface sur laquelle des composantes de
traction tx, ty et tz sont assignées aux valeurs respectives �𝑡𝑡𝑥𝑥, �𝑡𝑡𝑦𝑦 et 𝑡𝑡𝑧𝑧

• 𝑡𝑡𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑛𝑛𝑥𝑥 + 𝜏𝜏𝑥𝑥𝑦𝑦𝑛𝑛𝑦𝑦+𝜏𝜏𝑥𝑥𝑧𝑧𝑛𝑛𝑧𝑧 = �𝑡𝑡𝑥𝑥
• 𝑡𝑡𝑦𝑦 = 𝜏𝜏𝑦𝑦𝑦𝑦𝑛𝑛𝑥𝑥+ 𝜎𝜎𝑦𝑦𝑛𝑛𝑦𝑦 + 𝜏𝜏𝑦𝑦𝑦𝑦𝑛𝑛𝑧𝑧 = �𝑡𝑡𝑦𝑦  conditions aux limites essentielles

• 𝑡𝑡𝑧𝑧 = 𝜏𝜏𝑧𝑧𝑧𝑧𝑛𝑛𝑥𝑥+𝜏𝜏𝑧𝑧𝑧𝑧𝑛𝑛𝑦𝑦 + 𝜎𝜎𝑧𝑧𝑛𝑛𝑧𝑧 = �𝑡𝑡𝑧𝑧

Où nx ,ny et nz sont les normales unitaires extérieures à la surface

Conditions aux limites



Dr. Alain Prenleloup
SGM BA3 2024-2025

Mécanique des structures

Chapitre 13: Analyse des états de contrainte

Γ𝜎𝜎 =
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦 𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧 𝜏𝜏𝑧𝑧𝑧𝑧 𝜎𝜎𝑧𝑧



Chapitre 13 : États de contrainte et déformationΓ𝜎𝜎 =
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑧𝑧𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦 𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧 𝜏𝜏𝑦𝑦𝑦𝑦 𝜎𝜎𝑧𝑧
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Dans le système M0XYZ des axes principaux, choisis de manière que les contraintes
principales soient classées comme suit : σ1 > σ2 > σ3

Le module pn de la contrainte pn peut être calculé à partir de

• 𝐩𝐩𝑛𝑛 2 = 𝑝𝑝𝑛𝑛2 = 𝜎𝜎𝑛𝑛2 + 𝜏𝜏𝑛𝑛2 = 𝑋𝑋𝑛𝑛2 + 𝑌𝑌𝑛𝑛2 + 𝑍𝑍𝑛𝑛2 = 𝛼𝛼𝜎𝜎1 2 + 𝛽𝛽𝜎𝜎2 2+ 𝛾𝛾𝜎𝜎3 2

Écrivons les équations permettant d’établir les conditions devant être remplies par
les composantes σn et τn pour correspondre à des valeurs réelles de α, β et γ

• 𝜎𝜎12𝛼𝛼2 + 𝜎𝜎22𝛽𝛽2 + 𝜎𝜎32𝛾𝛾2 = 𝜎𝜎𝑛𝑛2 + 𝜏𝜏𝑛𝑛2

• 𝜎𝜎1 𝛼𝛼2 + 𝜎𝜎2 𝛽𝛽2 + 𝜎𝜎3 𝛾𝛾2 = 𝜎𝜎𝑛𝑛
• 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 = 1

Cercles de Mohr



Chapitre 13 : États de contrainte et déformationΓ𝜎𝜎 =
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑧𝑧𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦 𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧 𝜏𝜏𝑦𝑦𝑦𝑦 𝜎𝜎𝑧𝑧
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En travaillant sur ce système d’équation on peut finalement exprimer

• 𝜎𝜎 − 𝜎𝜎2 𝜎𝜎 − 𝜎𝜎3 + 𝜏𝜏2 ≥ 0

• 𝜎𝜎 − 𝜎𝜎3 𝜎𝜎 − 𝜎𝜎1 + 𝜏𝜏2 ≥ 0

• 𝜎𝜎 − 𝜎𝜎1 𝜎𝜎 − 𝜎𝜎2 + 𝜏𝜏2 ≥ 0

Dans le plan (σ, τ), les trois égalités apparaissant dans les relations constituent des
équations de cercles, connus sous le nom de cercles de Mohr, de diamètres (σ1 –
σ2), (σ1 – σ3) et (σ2 – σ3) et de centres (σ1 + σ2)/2, (σ1 + σ3)/2 et (σ2 + σ3)/2 situés sur
l’axe des contraintes normales σ.

Les trois inégalités sont dès lors satisfaites pour tout point se trouvant dans la zone
hachurée comprise entre ces cercles

Cas particulier de l’état de contrainte



Chapitre 13 : États de contrainte et déformationΓ𝜎𝜎 =
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑧𝑧𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦 𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧 𝜏𝜏𝑦𝑦𝑦𝑦 𝜎𝜎𝑧𝑧
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En travaillant sur ce système d’équation on peut finalement exprimer

• 𝜎𝜎 − 𝜎𝜎2 𝜎𝜎 − 𝜎𝜎3 + 𝜏𝜏2 ≥ 0

• 𝜎𝜎 − 𝜎𝜎3 𝜎𝜎 − 𝜎𝜎1 + 𝜏𝜏2 ≥ 0

• 𝜎𝜎 − 𝜎𝜎1 𝜎𝜎 − 𝜎𝜎2 + 𝜏𝜏2 ≥ 0

Cas particulier de l’état de contrainte



Chapitre 13 : États de contrainte et déformationΓ𝜎𝜎 =
𝜎𝜎𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑧𝑧𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦 𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧 𝜏𝜏𝑦𝑦𝑦𝑦 𝜎𝜎𝑧𝑧
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Trois contraintes principales égales : cet état de contrainte est réalisable
pratiquement d’une façon presque parfaite en immergeant un solide isotrope, sans
cavités intérieures, dans un fluide à pression constante : σ1 = σ2 = σ3 = – p0

Deux contraintes principales égales : si les forces extérieures et le solide possèdent
un axe de symétrie passant par le point M0, deux des contraintes principales sont
égales. Dans ce cas, un des cercles de Mohr dégénère en un point et les deux
autres sont confondus. La symétrie axiale permet donc de ramener l’étude des
contraintes à un problème plan

Une contrainte principale nulle : si l’une des contraintes principales est nulle, deux
des cercles de Mohr sont tangents à l’axe des τ et l’état de contrainte est plan ou
bidimensionnel. Un tel état de contrainte a été analysé en détails au chapitre 3.

Deux contraintes principales nulles : si deux des contraintes principales sont nulles,
un des cercles de Mohr dégénère en un point situé à l’origine, tandis que les deux
autres cercles coïncident et passent par l’origine. L’état de contrainte est alors mono-
axial ou unidimensionnel. Ce cas très particulier est en fait celui de la traction ou de
la compression pure étudiée au chapitre 2.

Cas  particuliers  de  l’état  de  contrainte
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