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Exemple de visualisation de I'état de contrainte

Critere de concentration de contrainte
obtenu par simulation numeérique

Visualisation des contraintes internes par
des sources de lumiere polarisée

Interférence de Moiré d’une plaque
sous contrainte



Chapitre 13 : Etats de contrainte et déformation

Analyse de I'état de contrainte

Les contraintes autour d'un point M, d’'un milieu continu sont, par définition, les
forces spécifiques agissant sur les éléments de surface passant par ce point

Soit AF, un élément de surface passant par M,, de vecteur normal unitaire n, sur
lequel agit une force elémentaire AP.

La contrainte p, sur cet element de surface, reperé par le vecteur n, a donc pour
valeur

La contrainte normale sur I'élement de
surface AF, est la projection o, de la
contrainte p, sur la normale n, tandis que
la contrainte tangentielle sur cet élément
est la composante z, de p, dans le plan
de AF,




Analyse de I'état de contrainte

Théoreme de Cauchy : La projection d'une contrainte p,, relative a une face de
normale n, sur la normale w’ d'une autre rface passant par le méme point M, d’un

milieu continu est égale a la projection de la contrainte p’,, relative a la face de
normalen’, surla nonmale n

g pn-n’zp’n-n




Chapitre 13 : Etats de contrainte et déformation

Matrice de contrainte

Par le point M, faisons passer trois axes perpendiculaires Myx, M,y et Mz, de vec-
teurs unitaires respectifs i, j et k. Sur les trois eléments de surface AF,, AF, et AF,
perpendiculaires aux axes, agissent respectivement les contraintes p,, p, et p,. Ces
éléments de surface passent par le point M,, mais ils sont representés separément
sur la figure pour plus de clarté

Py

/AF;?

\ L




Matrice de contrainte

La contrainte p, a pour composantes (o, 7,,, 7,.). De méme, les composantes de p,
et p, sont respectivement (z,,, o,, 7,.) et (z,, 7,, o). |l est évident qu'en raison du
theoreme de Cauchy, ces neuf composantes ne peuvent pas étre toutes indépen-

dantes

* Py i=pPy-] L Ty = T
¢ pz'izpy'k — T, = T,
¢ px'k=pz'i TXZ: sz

Sous forme matriciel

* pp=Is'n



Chapitre 13 : Etats de contrainte et déformation
Matrice de contrainte

La grandeur T, est appelée matrice du tenseur des contraintes ou plus simplement
matrice des contrainte

Ox Txy Txz
Tzx Tzy Oy

Notons que la matrice I, est symétrique en vertu du theoreme de Cauchy. Or, il est
toujours possible de transformer une matrice symétrique en matrice diagonale par
rotation appropriee des axes. La matrice I’y peut donc étre diagonalisee sous la
forme

oo 0 O
° F,O' = 0 (0))) 0
0 0 O3
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Matrice de contrainte

Les contraintes principales o, o, et oy sont portées par les axes principaux et sont
normales aux faces principales conformément a lalgebre lineaire, elles
correspondent aux valeurs propres de la matrice des contraintes et sont donc des
extrema des contraintes normales o,, o, et o,. Relevons enfin que les contraintes
tangentielles sont nulles sur les faces principales, comme le montre la matrice I'’
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[ 5 3’5\ Chapitre 13 : Etats de contrainte et déformation

Equation d’équilibre
Considérons maintenant un €lément infinitésimal hexaédrique droit de volume
dV = dxdydz dont I'état de contrainte n’est plus considéré comme homogene, centré

au point M,(x,y,z) et dont les faces sont orientées selon les axes x, y et z et soumis a
des forces volumiques d'amplitudes £, £, et £.

Le champs de contrainte est alors non-uniforme

Z.
| v 3
i - T
y Ty | Txy""':’ ‘ryz+a—;zdy
X -v T +%dx !
o7 T =7 ox \J do,
P Txz

Ty y

0Ty,
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Chapitre 13 : Etats de contrainte et déformation
Equation d’équilibre
Si les contraintes sont des fonctions continiment différentiables des variables x, y et

z , cet accroissement peut-étre déterming a partir d’'un développement de Taylor
limité au premier ordre

- o (x+dx,y,z) =0,.(x,y,2) + (x y,z)dx

c')rxy

© Ty +dx,y,z) = 14,(x,y,2) + (x,y,z)dx

xz

T, (x +dx,y,z) =1,,(x,,2) + (x y,z)dx

On peut écrire les conditions d’ equmbre des forces appliquées sur le paralléléepipede
infinitésimal dV. La somme des six composantes issues des forces surfaciques
dérivees des contraintes et de la composante découlant de la charge volumique
correspondante doit s'annuler. Selon Myx par exemple

o (o0 + 2 dx) dydz — oydydz + (ryx + 2 dy) dxdz — T,y dxdz

+ (sz + a;zx dz) dxdy — t,,dxdy + f,dxdydz = 0

15



Chapitre 13 : Etats de contrainte et déformation
Equation d’équilibre

En divisant par le volume infinitésimal dxdydz et en procédant de maniere identique
selon Myy et Mz on aboutit finalement aux trois relations générales qui constituent
les équations d’equilibre.

aO'x aTyx a'l'zx _
6x+ dy t 9z t =
0Tyxy 00y 0Tz .
0x T ady T 0z 4_f} =0
o0t 0T do

- 4 X4 L4 f =0

0x ady 0z
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Chapitre 13 : Etats de contrainte et déformation

Matrices des déformations

Soit un point P(x,y,z) d’'un corps B occupant un volume dans I'espace. Lorsqu’il est
déeformé, le corps occupe une nouvelle configuration B’ appelée configuration
déeformée.

- x'=x+ulxy,z)

- ¥y =y+vlxyz)

- z'=z+w(x,y,2)

u, v, w sont les composantes du
vecteur de déplacement PP’

17



Chapitre 13 : Etats de contrainte et déformation
Matrices des déformations

Soit O(x+dx , y+dy , z+dz) un point infiniment proche de P. Apres déeformation QO
devient O’

e x'+dx'=x+dx+u+du
-y +dy =y+dy+v+dv
e z'+dz ' =z+dz+w+dw

Le déplacement du point O peut étre exprimé par un développement de Taylor dans
le voisinage de P’

ou ou ou

e u+du= u+adx +£dy +Ed2
ov ov ov

° 17+d17 = U+adx +£dy +£dZ

ow ow ow
c w+dw = W-l-adx +Edy +¥dz

18



Chapitre 13 : Etats de contrainte et déformation
Matrices des déformations

En substituant ces équations dans les relations qui expriment les coordonnee du
point O et dans P’ (on ne présente que la solution de la premiere equation)

C (142 g+ 2 gy 4 2
« dx —(1+ax)dx+aydy+azdz

Ces équations étant linéaires en dx, dy et dz, elles peuvent étre considéréees comme

representant la transformation linéaire de PQ en P'Q’. L'incrément de déplacement
vaut alors

' dy = Py 4 gy 4 2
 du=dx dx—axdx+aydy+azdz

La longueur au carré de ces éléments peut alors exprimée par
« dS? =dx?+dy*+ dz?
« ds?=dx"?+dy'?+ dz'?
= dS? + 2e,dx? + 2e,dy? + 2e,dz? + 4(ey,dxdy + e,,dydz + e,,dzdx)
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Chapitre 13 : Etats de contrainte et déformation
Matrices des déformations

Ce qui permet de définir les éléments du tenseur de déformation d’Euler-Almarisi e
ou 1[fou\?  [ov\? | [ow)?
‘ ex—a—al(a) +(3) +($)]

1|/0u , dv ouou . dvadv , dowdw
exy == ||+ ) — + +
2|\dy Ox dx dy  0x 0y dx 0y

En se limitant aux petites déformations, les déplacements ont des dérivées petites et
donc les produits peuvent étre négligés. De sorte que le tenseur e peut étre
approché par le tenseur de déformation infinitésimal &

_ ou
T ox

Xy — Xy 7 2\ay  ox

° €y = &y

La longueur d’un élément infinitésimal est alors donnée par

o ds? =dS? + 2e,dx? + 2¢,dy?2¢,dz% + 4(ey, dxdy + €,,dydz + £,,dzdx)

20



Chapitre 13 : Etats de contrainte et déformation
Matrices des déformations

En plus des déformations & définies, I'éléments dS subit une rotation qui peut étre
exprimee par le vecteur

g = H(Z ), =122 gy = H(2L 22
yx = 7\ox oy Xz 9z  Ox zy — 2\0y 9z

Ce qui permet d’explicité les coordonnées du point P’ et du vecteur déplacement de
PP’ (seul les premiers termes sont explicités ici)

- dx' = (1 + )d + dy + dz =(1+e&)dx + (exy a)yx)dy + (&, — W, )dz

ou ou ou
© du=_—dx + 5dy +——dz = gdx + (exy — a)yx)dy + (&, — W, )dz

21



Chapitre 13 : Etats de contrainte et déformation
Matrices des déformations

Ce qui permet d’écrire la relation matriciel

du € Exy Exz dx 0 TWyy  Wyy dx
. (dv) =|&x & &z ||ldy |+ | Wyx 0 —Wgzy || dy
dw €zx  Ezy €z ) \dz —Wyy;  Wgy 0 dz
dx dx
=T | dy |+ Q| dy
dz dz

On a ainsi défini la matrice de déformations T, (déformation infinitésimales au point P)
et la matrice de rotations Q. (rotations infinitésimales d’un segment PQ)

22
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ol & o Chapitre 14 : Eléments d’élasticité linéaires

Introduction aux éléments d’élasticité linéaire

La théorie de I'élasticité est applicable dans un grand nombre de cas pratique, les
déformations étant generalement suffisamment petites pour que le recours a la loi de
Hooke soit justifié (en particulier pour les métaux et les ceramiques).

|l faut aussi relever que la théorie de I'élasticite jette les fondements de la mécanique
des solides et est a la base de I'élasticite non-linéaire , de la viscoélasticité et de
I'élastoplacticité.

On se contentera ici de décrire les équations de base pour un matériau isotrope

MATHEMATIQUE
analyse, géomeétrie,
algébre linéaire, etc.

Physique | : mécanique

s ™
Dynamique
Statique Cinétique (mécanique
vibratoire)
-

Mécanique des structures (résistance des matériaux)
Sollicitation globale = contrainte locale

MATERIAUX :
densité, élasticité,
plasticité, etc.

Mécanique des solides 1 ] [ Mécanique des fluides ]

Mécanique des milieux continu
Généralisation : déformation et contrainte dans les solides
déformable et les fluides

25



Ox Txy Tzx

ol & o Chapitre 14 : Eléments d'élasticité linéaires

Tzx Tyz Oz

Equation fondamentales de I'élastostatique linéaire

La théorie de I'élastostatique pour un matériau isotrope, homogene et lingaire,
soumis a des forces volumiques ainsi qu’a des deplacement ou des charges
imposés sur sa frontiere, se base sur I'utilisation des 15 équations décrites ci-apres.

/ . /7 gy
3 équations d'equilibre Lo,
27 0z
do 0t oT i T,y + T;ydz
. X + yx + ZX + fx =0 rzx+%dz§ Ve ?
dx dy 0z Z | )
ot do ot ‘ y e | T"y‘"'r”:”aar_;zdy
X Z . ' 0T, |
° Y —I— Y —|— Y —I— fy = 0 X ay<----:« v Taz + - dx Y. a0,
ax ay az ! . +a.[£dx xz - O'y+aydy
Vo, | "~ Ox T Ityx
0Tyxz; , 0Tyz 0oy « - +%ydx f:._,, yﬁaydy ......
" Tax Tay Ty T=0 S
* Y z R e dx
dy %,

Equilibre des forces dans les 3 directions (chapitre 1 : équilibre intérieur d’un solide)

Equilibre des moments de force a conduit a pouvoir écrire z; =
26



Equation fondamentales de I'élastostatique linéaire
6 équations définissant la relation déformation-déplacernent

(8 normales + 3 tangentielles)

__du _0v 0w

& BT & =%

Déformation relative (chapitre 2 : traction ou compression simple)

. __allongement A_f _[dx+ulx+dx)—u(x)]-dx _ [u@)+u’ (x)dx-u(x)] w (%) = du
- longueur initiale - fo - dx — dx dx
X  x+dx
—_ e
u(x) u(x+dx)

dx+u(x+dx)-u(x)

27



Chapitre 14 : Eléments d’élasticité linéaires
Equation fondamentales de I'élastostatique linéaire
6 équations définissant la relation déformation-déplacernent

(3 normales + 3 tangentielles)

Jv . dw ow . du
nyzyyx— +£ Vyz = Vzy = 6_+6y szzyxzza‘l'g

| | o | I y idy
Angle de glissement (chapitre 4 : cisaillement simple)
[ ] p— ﬂ X
)/ - dy T | o
I
\ ~
-~ dr -

28



Ox = @ ma—2w
% T @ ma-zw

%z = Wrw(—2m

Chapitre 14 : Eléments d’élasticité linéaires
Equation fondamentales de I'élastostatique linéaire
6 équations caractérisant la relation contrainte-déformation > 3 comp. normales

E

:(1 — W&y + UEy + ,LLEZ:

E

ey + (1 — ey + pe, |

E

Wi D= W -

:.ugx T Uey + (1- .u)gz:

0y — UOy, — UOy|

0y — HOx — HOg|

0, — 40y — [0y |

29



Chapitre 14 : Eléments d’élasticité linéaires
Equation fondamentales de I'élastostatique linéaire
6 équations caractérisant la relation contrainte-déformation > 3 comp. normales

1 - -

* & T L |9x — HOy T HOgz]
— 1 [ ]

* &y = L0y T HOx — U0y
— 1 [ 1

* & = [0z 7 HOy T UOx|

Chapitre 3 : Etat de contrainte bidimensionnel

Allongement selon M x Allongement selon My Allongement selon Mz

Ox Ox Ox
Effet selon o, Exx = z Eyx = —U z Epw = —UU z
_ O'y _ O'y _ O'y
Effet selon o, Exy = ~H 4 &y = & &y = ~H F
o
Effet selon o, e, e % €1y = EZ
XZ l’l E yz l’l E
1 1 1
Somme Ex = E (Ux — HOy — ﬂaz) €&y = E (Gy — HOx — ﬂaz) €z = E (JZ - HOx — lio'y)




Chapitre 14 : Eléments d’élasticité linéaires
Equation fondamentales de I'élastostatique linéaire
6 équations caractérisant la relation contrainte-adéformation > 3 comp. tangentielles

* Txy = 2(1}2-/,1) Vxy = nyy

* Tyz = Z(%_meyz = nyz
Tzx = 2(1L:7I-/,t) Yax = GVzx

Ou

* Vxy T 2(12_”) Txy = %Txy

* Vyz = 2(12_#) Tyz = %Tyz

* Vzx = 2(12_#) zx — %sz

Angle de glissement (chapitre 4, 5 et 6 : cisaillement, torsion, flexion)

T
° y = E
. _E
T 2(14p)

31



TZ X

(o)

yxy

E(1-p)

Vyz )
yZ X

A+ @a-2p)

|-

ool

(sym)

1— 4

= @ =

|-

Equation fondamentales de I'élastostatique linéair
6 équations caractérisant la relation contrainte-déformation

U
1—pu

QR O () ()
Qlr O o o O

U
U
1—u

Al © O O O O

Xy

\T”/
Tzx

0

0

(2

ny

Yyz /
Vzx
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Conditions aux limites

Le systeme d’équation preciteé ne peut étre résolu que si les conditions aux limites
appropriées sont imposees.

Considérons que le solide, occupant un domaine ¥, possede une frontiere S que 'on
peut diviser en deux parties (S=S5,U S,).

La partie S, représentant la partie de surface sur laquelle des composantes de
déeplacement u, v et w sont imposees aux valeurs respectives u, v et w

e U=1u V=" w=w < conditions aux limites naturelles

La partie S, représentant la partie de surface sur laquelle des composantes de
traction ¢,, ¢, et ¢, sont assignees aux valeurs respectives ty, t, ett,

© by = 0Ny F TyyNy + TN, = by
= TyxNyx T OyNy, + Ty, =t < conditions aux limites essentielles

Ou n, ,n, etn_sont les normales unitaires extérieures a la surface -
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Chapitre 13 : Etats de contrainte et déformation

Cercles de Mohr

Dans le systeme M XYZ des axes principaux, choisis de maniere que les contraintes
principales soient classées comme suit : o; > o, > o

Le module p, de la contrainte p, peut &tre calculé a partir de

c IpnlP=pi=0f + 14 =X5 + Vi + 75 = (a0y)* + (Boy)? + (yo3)?

Ecrivons les équations permettant d’établir les conditions devant étre remplies par
les composantes o, et z, pour correspondre a des valeurs réelles de a, fet y

- ofa?+oiB%+ oiy? =o0f + 12
« 0, a’+o0, B+ o3 ¥: =0y,

- at+pi+yi=1

36



Chapitre 13 : Etats de contrainte et déformation

Cas particulier de I'état de contrainte
En travaillant sur ce systeme d’équation on peut finalement exprimer

« (6—0y)(c—03)+12=0
« (6—o03)(c—0) +1%2=0

« (6—0a)(c—0y)+7122=20

Dans le plan (o, 7), les trois egalités apparaissant dans les relations constituent des
equations de cercles, connus sous le nom de cercles de Mohr, de diametres (o —
0y, (0, — o) et (o, — o3) et de centres (o + ,)/2, (0, + 03)/2 €t (o, + 73)/2 situés sur
I'axe des contraintes normales o.

Les trois inegalités sont des lors satisfaites pour tout point se trouvant dans la zone
hachurée comprise entre ces cercles

37



Cas particulier de I'état de contrainte
En travaillant sur ce systeme d’équation on peut finalement exprimer

(60 —0,)(0—03)+71%2=>0
(6 —03)(0—0)+7%2>0

(6 —0)(0—0y)+1%>0

38



Chapitre 13 : Etats de contrainte et déformation
Cas particuliers de I'état de contrainte

Trois contraintes principales égales : cet état de contrainte est réalisable
pratiguement d'une facon presque parfaite en immergeant un solide isotrope, sans
cavites interieures, dans un fluide a pression constante : o, = 0, = o3 = —p,

Deux contraintes principales égales : si les forces extérieures et le solide possedent
un axe de symetrie passant par le point M,, deux des contraintes principales sont
égales. Dans ce cas, un des cercles de Mohr dégenere en un point et les deux
autres sont confondus. La symétrie axiale permet donc de ramener 'étude des
contraintes a un probleme plan

Une contrainte principale nulle : si 'une des contraintes principales est nulle, deux
des cercles de Mohr sont tangents a I'axe des r et I'état de contrainte est plan ou
bidimensionnel. Un tel état de contrainte a été analysé en détails au chapitre 3.

Deux contraintes principales nulles : si deux des contraintes principales sont nulles,
un des cercles de Mohr degénere en un point situé a I'origine, tandis que les deux
autres cercles coincident et passent par I'origine. L’état de contrainte est alors mono-
axial ou unidimensionnel. Ce cas tres particulier est en fait celui de la traction ou de
la compression pure étudiée au chapitre 2.

39
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